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Lecture 13
Theory of Registration

ch. 10 of Insight into Images edited by Terry Yoo, et al.



Registration?

§The process of aligning a target image to a 
source image
§More generally, determining the spatial 

transform that maps points in one image to 
corresponding points in the other image
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Registration Criteria

§What do we compare to determine alignment?
§Three general philosophies:
§ Intensity-based
§ This is what we’ve mostly seen so far
§ Compare actual pixel values from one image to another
§ Comparison can be complex, such as with mutual information

§Segmentation-based
1. Segment the images
2. Register the binary segmentations

§ Landmark-based
§ Mark key points in both images (often by hand)
§ Derive a transform that makes every pair of landmarks match.
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Types of Spatial Transforms

§Rigid (rotate, translate)
§Affine (rigid + scale & shear/skew)
§Deformable (free-form = affine + vector 

field)
§Many others
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Figure 8.2 from the ITK Software Guide v 2.4, by Luis Ibáñez, et al., also showing the notation used by ch. 10 of Insight into Images, by 
Terry Yoo, et al.
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ITK (Legacy) Registration 
Flowchart, with Theory Notation
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Example Transform Notation

§Example notation for a rigid 2D transform:

§Goal:  find parameter values (i.e., tx, ty, θ) 
that optimize some image similarity metric.
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Optimizer

§ Optimizer adjusts the transform in an attempt to improve the metric
§ Often requires the derivative of the image similarity metric, S
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Constant during registration!

Spatial
coordinates
(output of
transform)



Understanding the Transform 
Jacobian
§J shows how changing p shifts a transformed point 

in the moving image space.
§This allows efficient use of a pre-computed 

moving-image gradient to infer changes in 
corresponding-pixel intensities for changes in p

§Now we can update dS/dp by just updating J
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Transforms

§Before we discuss specific transforms, let’s 
discuss the…
§Fixed Set = the set of points (i.e. physical 

coordinates) that are unchanged by the 
transform
§The fixed set is a very important property of 

a transform
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Identity Transform

§Does “nothing”
§Every point is mapped to itself
§Fixed set = everything (i.e., the entire space)
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Translation Transform

§Fixed set = empty set
§Translation can be closely approximated by:
§Small rotation about distant origin, and/or…
§Small scale about distant origin
§Both of these do have a fixed point

§Optimizers will frequently (accidently) do 
translation by using either rotation or scale
§This makes the optimization space harder to use
§The final transform may be harder to understand
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Scaling Transform

§Isotropic scaling (same in all directions)
§Anisotropic scaling
§Fixed set = origin = “center” = C
§But, we can shift the origin:
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§D = Scaling Factor
§C = Fixed Set

 i.e., shifted origin

§Ti = Translation 
derived from 
scaling along 
dimension i if 
using center C
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Translation from Scaling



2D Rotation Transform

§Rotation transforms are typically specific to 
either 2D or 3D
§Fixed set = origin = “center” = C
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§θ = Rotation angle
§C = Fixed Set

 (Just one point)
§Ti = Translation along 

dimension i derived 
from rotation about 
center C
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Translation from 2D Rotation



Polar Coordinates:
2D Rotation = Multiplication
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Optimizing 2D Rotations

§Remember, optimization searches for the parameter values 
(i.e., θ) that give the best similarity score, S

§Ex:  Gradient descent update step:

§The variation, G, is the gradient of S
§Step length is λ
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Optimizing 2D Rotations with 
Scaling
§Transform is now multiplication by Deiθ:
§Ex:  Gradient descent update step:

§Apply transform to point as:
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Similarity Transform

§P’ = T(P) = (P-C)Deiθ+C
§P = arbitrary point
§C = fixed point
§D = scaling factor
§Rigid transform if D = 1

§θ = rotation angle
§P & C are complex numbers:  (x+iy) or reiθ
§Store derivatives of P in Jacobian matrix
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Affine Transform

§Only thing guaranteed preserved is 
collinearity
§x’ = A x + T
§A is a complex matrix of coefficients
§Translation expressed as shifted fixed point:
§x’ = A (x-C) + C

§A is optimized similar to scaling factor
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Quaternions:  3D Scaling & 
Rotation
§Quotient of two vectors:
§Q = A / B

§Operator that produces second vector:
§A = Q ★ B

§Composed of a versor (for rotation) and a 
tensor (for scaling)
§Q = T  V
§Requires a total of 4 numbers
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Tensors:
Representing 3D Scaling
§Often denoted T
§Tensors change the length of a vector
§For parallel vectors, tensors are scalars
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Versors:
Representing 3D Rotations
§Often denoted V
§Problem:  3D Polar coordinates have a 

singularity at the poles
§As do all 2-parameter 3D rotation representations
§Longitude lines converge at the north and south pole

§Solution:  Use 3 parameters!
§A versor is a vector pointing along the axis of 

rotation.
§The length of a versor gives the amount of 

rotation.
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§Arc c is the versor VAB 
that rotates the unit 
vector A to the unit 
vector B

§VAB = B / A
§The versor can be 

repositioned anywhere 
on the sphere without 
changing it

§VAC = VBC  VAB
§NOT commutative
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Versors on Unit Spheres
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VBC

VAC



Versor Addition

§Adding two versors is analogous to 
averaging them.
§Do NOT use versor addition with gradient 

descent
§Use composition instead:
§Vt+1=dVt  Vt
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Optimization of Versors

§Versor angle should be scaled using an 
exponent
§Vw will rotate by w times as much as V
§Θ(Vw) = wθ, where Θ(V)=θ

§Versor increment rule:

26



Rigid 3D Transform

§Use versor instead of phasors/polar 
coordinates
§P’ = V★(P-C) +C
§P’ = V★P + T, where T=C-V★C
§P = point, T = translation, C = fixed point, V 

= versor
§Represented by 6 parameters:
§3 for versor
§3 for shifted center
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§The 3 elementary 
quaternions are the 
3 orthogonally-
oriented right 
versors (i,j,k):
-i = k  j
-j = i  k
-k = j  i
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Elementary Quaternions

k

i

j The angle of
each of these
versors is a
right angle.



Versors:
Numerical Representation
§Any right versor v can be represented as:
§ v = xi + yj + zk,  with x2 + y2 + z2 = 1

§Any generic versor V can be represented using the 
right versor v parallel to its axis of rotation, plus 
the rotation angle θ:
§V = evθ

§V = cosθ  + v sinθ
§V = cosθ  + (xi + yj + zk) sinθ, with x2 + y2 + z2 = 1
§V = (cosθ, x sinθ, y sinθ, z sinθ) , with x2 + y2 + z2 = 1
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Similarity 3D Transform

§Replace versor with quaternion to represent 
both rotation and scale
§P’ = Q★(P-C) + C
§P’ = Q★P + T, where T=C-Q★C
§P = arbitrary point
§C = fixed point
§Q = quaternion

30



Mutual Information
An N-Dimensional Multi-Modal Registration Metric:
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Different Modalities

§Problem:  In CT, a tumor may be darker than the 
surrounding liver tissue, but in MRI, the tumor may be 
brighter, while both modalities may have liver darker 
than other organs, but vasculature may be visible in CT 
but not in MRI, etc.

§Directly comparing pixel values is hard
§ Sometimes bright maps to bright
§ Sometimes bright maps to dark
§ Sometimes both bright & dark map to just dark, etc.

§Old, “bad” solutions:
§ Try to simulate CT pixel values from MRI data, etc.
§ But if we could do this, then we wouldn’t need both modalities!

§ Try to segment first, register second
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Solution

§For each registration attempt, optimize the 
“niceness” of the resulting joint probability 
distributions for mapping pixel values from 
one modality to the other
§How?
§Maximize the mutual information between 

the two images
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Mutual Information

§Based on information theory
§Idea:  If both modalities scan the same 

underlying anatomy, then there should be 
redundant (i.e., mutual) information 
between them.
§If bones are visible, then they should overlap
§Image edges should mostly overlap
§In general, each image intensity value in one 

image should map to only a few image 
intensities in the other image.
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Mutual Information

§Our similarity metric should now maximize:
§The mutual information between the images, =
§The information that each image provides about the 

other

§Assumption:  Mutual information will be at a 
maximum when images are correctly aligned
§Note:  We do NOT need a model of this 

mapping before registration—the mapping is 
learned as it is optimized
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Mutual Information, 
Conceptually
§Look at the joint histogram of pixel 

intensities
§For every pair of pixels, one mapped onto the 

other, use their pixel intensities to look up the 
appropriate bin of the 2D histogram, and then 
increment that bin.

§We want this joint histogram to be tightly 
clustered, i.e. “peaky”

§Bad registrations will make the joint histogram 
look like a diffuse cloud
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Good Registration à
Tightly Clustered Joint Histogram

Bad Registration à
Diffuse/Blurred Joint Histogram

CT Values

MR Values

Vessels(
darkest)

Tumor(
dark)

Liver Other(b
right)

Liver & 
Vessels
(dark)

✔ ✔

Other(b
right) ✔
Tumor
(Brightest) ✔

CT Values

MR Values

Vessels(
darkest)

Tumor(
dark)

Liver Other(b
right)

Liver & 
Vessels
(dark)

✓ ✓ ✓ ✓

Other(b
right) ✓ ✓ ✓ ✓
Tumor
(Brightest) ✓ ✓ ✓ ✓
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Joint Histogram Examples



Mutual Information:  Details

§Calculated by measuring entropies
§M.I. = difference between joint entropy and the 

sum of individual entropies
§The math encourages transformations that 

make the images overlap on complex parts, 
something most similarity measures don’t 
do
§In effect, M.I seeks a transform that finds 

complexity and explains it well.
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Mutual Information:

§Is robust with respect to occlusion—
degrades gracefully
§Is less sensitive to noise and outliers
§Has an improved version, Mattes, which 

uses math that results in a smoother 
optimization space.
§Is now the de-facto similarity metric for 

multi-modal registration.
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