Lecture 12b Parametric Transforms

sec. 8.5 .2 \& ch. 11 of Machine Vision by Wesley E. Snyder \& Hairong Qi

Spring 2024
16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

Snyder ch. 11: Parametric Transforms

-Goal: Detect geometric features in an image
-Method: Exchange the role of variables and parameters
-References: Snyder 11 \& ITK Software Guide book 2, 4.4

Geometric Features?

-For now, think of geometric features as shapes that can be graphed from an equation.
-Line: $\mathbf{y}=m x+b$
-Circle: $\mathrm{R}^{2}=\left(\mathbf{x}-\mathrm{x}_{\text {center }}\right)^{2}+\left(\mathbf{y}-\mathrm{y}_{\text {center }}\right)^{2}$
(variables are shown in bold purple, parameters are in black)

Why Detect Geometric Features?

-Guide segmentation methods

- Automated initialization!
-Prepare data for registration methods
-Recognize anatomical structures

How do we do this again?

-Actually, each edge pixel "votes"
-If we are looking for lines, each edge pixel votes for every possible line through itself:

-Example: 3 collinear edge pixels:

How to Find All Possible Shapes for each Edge Pixel

-Exchange the role of variables and parameters:
-Example for a line: $y=m x+b$
(variables are shown in bold purple)
-Each edge pixel in the image:

- Has its own (x, y) coordinates
- Establishes its own equation of (m,b)

This is the set of all possible shapes through that edge point

How to Implement Voting

-With an accumulator

- Think of it as an image in parameter space
- Its axes are the new variables (which were formally parameters)
- But, writing to a pixel increments (rather than overwriting) that pixel's value.
- Graph each edge pixel's equation on the accumulator (in parameter space)
-Maxima in the accumulator are located at the parameters that fit the shape to the image.

Example 1: Finding Lines

- If we use $\mathbf{y}=\mathrm{mx}+\mathrm{b}$
-Then each edge pixel results in a line in parameter space:
$\mathbf{b}=-\mathbf{m x}+\mathrm{y}$

Edge Detection Results (contains 2 dominant line segments)

Accumulator Intermediate Result (after processing 2 edge pixels)

Example 1: Finding Lines

- A closer look at the accumulator after processing 2 and then 3 edge pixels
- The votes from each edge pixel are graphed as a line in parameter space
- Each accumulator cell is incremented each time an edge pixel votes for it
- I.e., each time a line in parameter space passes through it

Example 2: Finding Lines... A Better Way

-What's wrong with the previous example?

- Consider vertical lines: $\mathrm{m}=\infty$
- My computer doesn't like infinite-width accumulator images. Does yours?
-For parametric transforms, we need a different line equation, one with a bounded parameter space.

Example 2: Finding Lines... A Better Way

- A better line equation for parameter voting:

$$
\rho=x \cos \theta+y \sin \theta
$$

- $\rho \leq$ the input image diagonal size
- But, to make math easy, ρ can be - too.
- θ is bounded within $[0,2 \pi]$

See Machine Vision Fig. 11.5 for example of final accumulator for 2 noisy lines

Computational Complexity

-This can be really slow

- Each edge pixel yields a lot of computation
- The parameter space can be huge
-Speed things up:
- Only consider parameter combinations that make sense...
- Each edge pixel has an apx. direction attached to its gradient, after all.

Example 3: Finding Circles

-Equation: $\mathrm{R}^{2}=\left(\mathrm{x}-\mathrm{x}_{\text {center }}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{\text {center }}\right)^{2}$

- Must vote for 3 parameters if R is not known!

Example 4: General Shapes

- What if our shape is weird, but we can draw it?
- Being able to draw it implies we know how big it will be
- See Snyder 11.4 for details
- Main idea:
- For each boundary point, record its coordinates in a local reference frame (e.g., at the shape's center-of-gravity).
- Itemize the list of boundary points (on our drawing) by the direction of their gradient

