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Mathematical Morphology

§The study of shape…
§Using Set Theory

§Most easily understood for binary images.
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Binary Morphology:  Basic Idea

1. Make multiple copies of a shape
2. Translate those copies around
3. Combine them with either their:

§ Union, ∪, in the case of dilation, ⨁
§ Intersection, ∩, in the case of erosion, Θ
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Dilation makes things bigger
Erosion makes things smaller



Binary Morphology:  Basic Idea

§Q: How do we designate:
§ The number of copies to make?
§ The translation to apply to each copy?

§A: With a structuring element (s.e.)
§ A (typically) small binary image.
§ We will assume the s.e. always contains the origin.

§For each marked pixel in the s.e.:
§ Make a new copy of the original image
§ Translate that new copy by the coordinates of the current pixel in 

the s.e.
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Dilation Example
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Erosion Example

§For erosion, we translate by the negated coordinates of the 
current pixel in the s.e.
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Notation
§A (binary) image: fA
§The set of marked pixels in fA: A
§A = { (x1,y1), (x2,y2), … }

§A translated image or set:  fA(dx,dy) or A(dx,dy)
§The number of elements in A: #A
§Complement (inverse) of A:  Ac

§Reflection (rotation) of A:  Ã
§Ã = { (-x,-y) | (x,y) ∈ A }
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Properties

§Dilation:
§ Commutative, Associative, & Distributive
§ Increasing:  If A	⊆	B then A ⨁	K ⊆ B ⨁	K 
§ Extensive:  A ⊆ A ⨁	B

§Erosion:
§ Anti-extensive (A Θ B ⊆ A), … (see the text)

§Duality:
§ (A Θ B)c = Ac ⨁ B
§ (A ⨁ B)c = Ac Θ B

§Not Inverses:
§ A ≠ (A Θ B) ⨁	B
§ A ≠ (A ⨁	B) Θ B
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~ This is actually the

opening of A by B

This is actually the
closing of A by B



Opening

§ fA o fB = (fA Θ fB) ⨁ fB

§Preserves the geometry of objects that are “big enough”
§Erases smaller objects

§Mental Concept:
§ “Pick up” the s.e. and place it in fA.
§ Never place the s.e. anywhere it covers any pixels in fA that are not 

marked.
§ fA o fB = the set of (marked) pixels in fA which can be covered by the 

s.e.
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Opening Example

§Use a horizontal s.e. to remove 1-pixel thick 
vertical structures:
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Gray-Scale Morphology

§Morphology operates on sets
§Binary images are just a set of marked pixels
§Gray-scale images contain more information
§How can we apply morphology to this extra 

intensity information?
§We need to somehow represent intensity as 

elements of a set
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§Gray-scale morphology 
operates on the umbra 
of an image.

§ Imagine a 2D image as a 
pixilated surface in 3D

§We can also “pixilate” 
the height of that 
surface

§The 2D image is now a 
3D surface made of 3D 
cells
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The Umbra

The umbra of a 1D image
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§ Records at each pixel the 
distance from that pixel to 
the nearest boundary (or to 
some other feature).

§ Used by other algorithms
§ The DT is a solution of the 

Diff. Eq.:
  || 𝛻DT(x) || = 1,
  DT(x) = 0 on boundary

§ Can compute using erosion
§ DT(x) = iteration when x 

disappears
§ Details in the book
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The Distance Transform (DT)

DT of a region’s interior



Voronoi Diagram
§ Divides space
§ Related to DT

§ Q:  To which of a set of regions (or points) 
is this point the closest?

§ Voronoi Diagram’s boundaries = points 
that are equi-distant from multiple 
regions

§ Voronoi Domain of a region = the “cell” of 
the Voronoi Diagram that contains the 
region

§ Details in the text

14The voronoi diagram of a set of 10 points is public domain from:
http://en.wikipedia.org/wiki/File:2Ddim-L2norm-10site.png



Imaging Matching (ch. 13)

§Matching iconic images
§Matching graph-theoretic representations

§Most important:
§Eigenimages
§Springs & Templates
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Template Matching

§Template ≈ a relatively small reference image for some 
feature we expect to see in our input image.

§Typical usage:  Move the template around the input image, 
looking for where it “matches” the best (has the highest 
correlation).

§Rotation & scale can be problematic
§ Often require multiple passes if they can’t be ruled out a-priori

§How “big” do we make each template?
§ Do we represent small, simple features
§ Or medium-size, more complex structures?
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Eigenimages

§Goal:  Identify an image by comparing it to a 
database of other images
§Problem:  Pixel-by-pixel comparisons are 

two expensive to run across a large 
database
§Solution:  Use PCA
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§ Big Picture:  Fitting a hyper-ellipsoid & then (typically) reducing dimensionality 
by flattening the shortest axes

§ Same as fitting an (N+1)-dimensional multivariate Gaussian, and then taking 
the level set corresponding to one standard deviation

§ Mathematically, PCA reduces the dimensionality of data by mapping it to the 
first n eigenvectors (principal components) of the data’s covariance matrix

§ The first principal component is the eigenvector with the largest eigenvalue 
and corresponds to the longest axis of the ellipsoid

§ The variance along an eigenvector is exactly the eigenvector’s eigenvalue
§ This is VERY important and VERY useful.  Any questions?
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Eigenimages:  Procedure

§Run PCA on the training images
§See the text for efficiency details

§Store in the database:
§The set of dominant Eigenvectors
§ = the principle components 
§ = the Eigenimages

§For each image, store its coefficients when projected 
onto the Eigenimages

§Match a new image:
§Project it onto the basis of the Eigenimages
§Compare the resulting coefficients to those stored in the 

database.
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Eigenimages Example
Eigenimages / EigenfacesTraining Images

PCA

New
Images:

Project Onto

The face database and the derived Eigenface examples are all from AT&T Laboratories Cambridge:
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html   &   http://en.wikipedia.org/wiki/File:Eigenfaces.png

Which training 
image(s) does 
each face most 
resemble?



Matching Simple Features

§Classification based on features
§Ex:  mean intensity, area, aspect ratio

§Idea:
§Combine a set of shape features into a single feature 

vector
§Build a statistical model of this feature vector between 

and across object classes in a sequence of training 
shapes

§Classification of a new shape = the object class from 
which the new shape’s feature vector most likely came.
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One of two 
maximal cliques

Graph Matching:
Association Graphs
§ Match nodes of model to segmented patches in image
§ Maximal cliques represent the most likely correspondences

§ Clique = a totally connected subgraph
§ Problems:  Over/under segmentation, how to develop appropriate 

rules, often > 1 maximal clique
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§ Idea:  When matching 
simple templates, we 
usually expect a certain 
arrangement between 
them.

§So, arrange templates 
using a graph structure.

§The springs are allowed to 
deform, but only “so” 
much.
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Graph Matching:
Springs & Templates

Eye Eye

Nose

Left
edge

Right
edge

Top of head

Mouth

Fischler and Elschlager’s “Pictorial Structures” spring & template model for image matching from the early 1970s



§A match is based on 
minimizing a total cost.

§Problem:  Making sure 
missing a point doesn’t 
improve the score.
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Graph Matching:
Springs & Templates


