Lecture 17:
 Morphology (ch 7) \& Image Matching (ch 13)

ch. 7 and ch. 13 of Machine Vision by Wesley E. Snyder \& Hairong Qi

Spring 2024
16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

Mathematical Morphology

- The study of shape...
- Using Set Theory
- Most easily understood for binary images.

Binary Morphology: Basic Idea

1. Make multiple copies of a shape
2. Translate those copies around
3. Combine them with either their:

- Union, U, in the case of dilation, \oplus
- Intersection, \cap, in the case of erosion, Θ

> | Dilation makes things bigger |
| :--- |
| Erosion makes things smaller |

Binary Morphology: Basic Idea

- Q: How do we designate:
- The number of copies to make?
- The translation to apply to each copy?
- A: With a structuring element (s.e.)
- A (typically) small binary image.
- We will assume the s.e. always contains the origin.
- For each marked pixel in the s.e.:
- Make a new copy of the original image
- Translate that new copy by the coordinates of the current pixel in the s.e.

Dilation Example

$B=\{(0,0),(0,-1)\}$,8),(5,6),(2,4),(3,4
),(3,3),(4,3),(5,3),(6,3),(7,3),(7,4),(8, 4) \}

$$
5
$$

相

Erosion Example

- For erosion, we translate by the negated coordinates of the current pixel in the s.e.

Notation

- A (binary) image: f_{A}
- The set of marked pixels in f_{A} : A
- $\mathrm{A}=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\right\}$
- A translated image or set: $f_{A_{\text {atad }}}$ or $\mathrm{A}_{(\mathrm{dx}, \mathrm{dy})}$
- The number of elements in A: \#A
- Complement (inverse) of A : A^{c}
- Reflection (rotation) of $A: \tilde{A}$
- $\tilde{A}=\{(-x,-y) \mid(x, y) \in \mathrm{A}\}$

Properties

- Dilation:
- Commutative, Associative, \& Distributive
- Increasing: If $A \subseteq B$ then $A \oplus K \subseteq B \oplus K$
- Extensive: $\mathrm{A} \subseteq \mathrm{A} \oplus \mathrm{B}$
- Erosion:
- Anti-extensive ($\mathrm{A} \Theta \mathrm{B} \subseteq \mathrm{A}$), ... (see the text)
- Duality:
- $(A \Theta B)^{c}=A^{c} \oplus \widetilde{B}$
- $(A \oplus B)^{c}=A^{c} \Theta \widetilde{B}$
- Not Inverses:
- $A \neq(A \Theta B) \oplus B$
- $A \neq(A \oplus B) \Theta B$

This is actually the opening of A by B

This is actually the closing of A by B

Opening

- $f_{A} o f_{B}=\left(f_{A} \Theta f_{B}\right) \oplus f_{B}$
- Preserves the geometry of objects that are "big enough"
- Erases smaller objects
- Mental Concept:
- "Pick up" the s.e. and place it in f_{A}.
- Never place the s.e. anywhere it covers any pixels in f_{A} that are not marked.
- $f_{A} o f_{B}=$ the set of (marked) pixels in f_{A} which can be covered by the s.e.

Opening Example

-Use a horizontal s.e. to remove 1-pixel thick vertical structures:

Gray-Scale Morphology

- Morphology operates on sets
- Binary images are just a set of marked pixels
- Gray-scale images contain more information
- How can we apply morphology to this extra intensity information?
- We need to somehow represent intensity as elements of a set

The Umbra

- Gray-scale morphology operates on the umbra of an image.
- Imagine a 2D image as a pixilated surface in 3D
-We can also "pixilate" the height of that surface
- The 2D image is now a 3D surface made of 3D cells

The umbra of a 1D image

The umbra of a 1D s.e.

The Distance Transform (DT)

- Records at each pixel the distance from that pixel to the nearest boundary (or to some other feature).
- Used by other algorithms
- The DT is a solution of the Diff. Eq.:

$$
\begin{aligned}
& \|\nabla \operatorname{DT}(x)\|=1, \\
& \operatorname{DT}(x)=0 \text { on boundary }
\end{aligned}
$$

- Can compute using erosion
- DT $(x)=$ iteration when x disappears
- Details in the book

	1					1	1	
	1					1	1	
	1	1	1		1	$\mathbf{2}$	1	
	1	$\mathbf{2}$	$\mathbf{2}$	1	$\mathbf{2}$	$\mathbf{2}$	1	
		1	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	1	
		1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$	1	
		1	$\mathbf{2}$	$\mathbf{2}$	1	$\mathbf{2}$	1	
		1	$\mathbf{2}$	1		1	1	
			1			1		
			1					

DT of a region's interior

Voronoi Diagram

- Divides space
- Related to DT
- Q: To which of a set of regions (or points) is this point the closest?
- Voronoi Diagram's boundaries = points
 that are equi-distant from multiple regions
- Voronoi Domain of a region = the "cell" of the Voronoi Diagram that contains the region
- Details in the text

Imaging Matching (ch. 13)

- Matching iconic images
-Matching graph-theoretic representations
-Most important:
- Eigenimages
- Springs \& Templates

Template Matching

- Template \approx a relatively small reference image for some feature we expect to see in our input image.
- Typical usage: Move the template around the input image, looking for where it "matches" the best (has the highest correlation).
- Rotation \& scale can be problematic
- Often require multiple passes if they can't be ruled out a-priori
- How "big" do we make each template?
- Do we represent small, simple features
- Or medium-size, more complex structures?

Eigenimages

-Goal: Identify an image by comparing it to a database of other images
-Problem: Pixel-by-pixel comparisons are two expensive to run across a large database
-Solution: Use PCA

PCA (K-L Expansion)

- Big Picture: Fitting a hyper-ellipsoid \& then (typically) reducing dimensionality by flattening the shortest axes
- Same as fitting an ($\mathrm{N}+1$)-dimensional multivariate Gaussian, and then taking the level set corresponding to one standard deviation
- Mathematically, PCA reduces the dimensionality of data by mapping it to the first n eigenvectors (principal components) of the data's covariance matrix
- The first principal component is the eigenvector with the largest eigenvalue and corresponds to the longest axis of the ellipsoid
- The variance along an eigenvector is exactly the eigenvector's eigenvalue
- This is VERY important and VERY useful. Any questions?

Eigenimages: Procedure

- Run PCA on the training images
- See the text for efficiency details
- Store in the database:
- The set of dominant Eigenvectors
- = the principle components
- = the Eigenimages
- For each image, store its coefficients when projected onto the Eigenimages
- Match a new image:
- Project it onto the basis of the Eigenimages
- Compare the resulting coefficients to those stored in the database.

Eigenimages Example

Training Images

The face database and the derived Eigenface examples are all from AT\&T Laboratories Cambridge:

Matching Simple Features

-Classification based on features

- Ex: mean intensity, area, aspect ratio
-Idea:
- Combine a set of shape features into a single feature vector
- Build a statistical model of this feature vector between and across object classes in a sequence of training shapes
- Classification of a new shape = the object class from which the new shape's feature vector most likely came.

Graph Matching: Association Graphs

- Match nodes of model to segmented patches in image
- Maximal cliques represent the most likely correspondences
- Clique = a totally connected subgraph
- Problems: Over/under segmentation, how to develop appropriate rules, often > 1 maximal clique

Image

Model

maximal cliques

Graph Matching: Springs \& Templates

- Idea: When matching simple templates, we usually expect a certain arrangement between them.
- So, arrange templates using a graph structure.
- The springs are allowed to deform, but only "so"
 much.

Graph Matching: Springs \& Templates

- A match is based on minimizing a total cost.
- Problem: Making sure missing a point doesn't improve the score.

```
Cost =
\sum
+
\sum
+
\sum 
```

