Lecture 6 Linear Processing

ch. 5 of Machine Vision by Wesley E. Snyder \& Hairong Qi

Spring 2024

16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

Linear Operators

- D is a linear operator iff:- "If and only if"

$$
D\left(\alpha f_{1}+\beta f_{2}\right)=\alpha D\left(f_{1}\right)+\beta D\left(f_{2}\right)
$$

Where f_{1} and f_{2} are images, and α and β are scalar multipliers
-Not a linear operator (why?):

$$
g=D(f)=a f+b
$$

Kernel Operators

- Kernel (h) =
"small image"
- Often 3x3 or 5x5

$h_{-1,-1}$	$h_{0,-1}$	$h_{1,-1}$
$h_{-1,0}$	$h_{0,0}$	$h_{1,0}$
$h_{-1,1}$	$h_{0,1}$	$h_{1,1}$

- Correlated with a "normal" image (f)

$f_{0,0}$	$f_{1,0}$	$f_{2,0}$	$f_{3,0}$	$f_{4,0}$
$f_{0,1}$	$f_{1,1}$	$f_{2,1}$	$f_{3,1}$	$f_{4,1}$
$f_{0,2}$	$f_{1,2}$	$f_{2,2}$	$f_{3,2}$	$f_{4,2}$
$f_{0,3}$	$f_{1,3}$	$f_{2,3}$	$f_{3,3}$	$f_{4,3}$
$f_{0,4}$	$f_{1,4}$	$f_{2,4}$	$f_{3,4}$	$f_{4,4}$

- Implied correlation (sum of products) makes a kernel an operator. A linear operator.
- Note: This use of correlation is often mislabeled as convolution in the literature.
- Any linear operator applied to an image can be approximated with correlation.

Kernels for Derivatives

- Task: estimate partial spatial derivatives
- Solution: numerical approximation
- $[f(x+1)-f(x)] / 1$
- Really Bad choice: not even symmetric
- $[f(x+1)-f(x-1)] / 2$
- Still a bad choice: very sensitive to noise
- We need to blur away the noise (only blur orthogonal to the direction of each partial):

$$
\frac{\partial f}{\partial x}=\frac{1}{6}(\left[\begin{array}{ccc}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{array}\right] \otimes \underbrace{}_{\substack{\text { Correlation } \\
\text { (sum of products) }}} \text { or } \frac{\partial f}{\partial x}=\frac{1}{8}\left(\left[\begin{array}{ccc}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right] \otimes f\right))^{\begin{array}{l}
\text { The Sobel kernel } \\
\text { is center-weighted }
\end{array}}
$$

Derivative Estimation \#2: Use Function Fitting

- Think of the image as a surface
- The gradient then fully specifies the orientation of the tangent planes at every point, and vice-versa.
- So, fit a plane to the neighborhood around a point
- Then the plane gives you the gradient
- The concept of fitting occurs frequently in machine vision. Ex:
- Gray values
- Surfaces
- Lines
- Curves
- Etc.

Derivative Estimation: Derive a 3×3 Kernel by Fitting a Plane

- If you fit by minimizing squared error, and you use symbolic notation to generalize, you get:
- A headache
- The kernel that we intuitively guessed earlier:

$\frac{1}{6}$| -1 | 0 | 1 |
| :---: | :---: | :---: |
| -1 | 0 | 1 |
| -1 | 0 | 1 |

Vector Representations of Images

- Also called lexicographic representations
- Linearize the image
- Pixels have a single index (that starts at 0)

$f_{0,0}$	$f_{1,0}$	$f_{2,0}$	$f_{3,0}$					
$f_{0,1}$	$f_{1,1}$	$f_{2,1}$	$f_{3,1}$					
$f_{0,2}$	$f_{1,2}$	$f_{2,2}$	$f_{3,2}$					
$f_{0,3}$	$f_{1,3}$	$f_{2,3}$	$f_{3,3}$	\quad	F_{0}	F_{1}	F_{2}	F_{3}
:---:	:---:	:---:	:---:					
F_{4}	F_{5}	F_{6}	F_{7}					
F_{8}	F_{9}	F_{10}	F_{11}					
F_{12}	F_{13}	F_{14}	F_{15}					

Change of coordinates

$\mathrm{F}_{0}=7$			
7	4	6	1
3	5	9	0
8	1	4	5
2	0	7	2

Vector listing of pixel values

Vector Representations of Kernels
 This is

- Can also linearize a kernel
- Linearization is unique for each pixel coordinate and for each image size.
- For pixel coordinate $(1,2)$ (i.e. pixel F_{9}) in our image:

F_{0}	F_{1}	F_{2}	F_{3}
F_{4}	F_{5}	F_{6}	F_{7}
F_{8}	F_{9}	F_{10}	F_{11}
F_{12}	F_{13}	F_{14}	F_{15}

$$
h=\begin{array}{|l|l|l|}
\hline-3 & 1 & 2 \\
\hline-5 & 4 & 6 \\
\hline-7 & 9 & 8 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& H_{9}=\left[\begin{array}{lllllllllllllll}
0 & 0 & 0 & 0 & -3 & 1 & 2 & 0 & -5 & 4 & 6 & 0 & -7 & 9 & 8
\end{array}\right]^{\mathrm{T}} \\
& H_{10}=\left[\begin{array}{lllllllllllllll}
0 & 0 & 0 & 0 & 0 & -3 & 1 & 2 & 0 & -5 & 4 & 6 & 0 & -7 & 9
\end{array}\right]^{\mathrm{T}}
\end{aligned}
$$

- Can combine the kernel vectors for each of the pixels into a single lexicographic kernel matrix (H)
- H is circulant (columns are rotations of one another). Why?

HUGE
(N^{2})

Convolution in Lexicographic Representations

-Convolution becomes matrix multiplication!
-Great conceptual tool for proving theorems

- H is almost never computed or written out

Basis Vectors for (Sub)Images

- Carefully choose a set of basis vectors (image patches) on which to project a sub-image (window) of size (x, y)
- Is this lexicographic?
- The basis vectors with the largest coefficients are the most like this sub-image.
- If we choose meaningful basis vectors, this tells us something about the sub-image

Cartesian Basis Vectors

$$
\left.\begin{array}{rl}
\mathbf{u}_{1} & =\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} 0\right.
\end{array}\right]^{\mathrm{T}} \mathbf{u}_{2}=\left[\begin{array}{llllllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]^{\mathrm{T}} .
$$

Frei-Chen Basis Vectors

$$
\begin{aligned}
& \left.\left[\begin{array}{ccc}
\mathbf{u}_{4} & \mathbf{u}_{4} \\
-1 & 0 & 0 \\
0 & 1 & -\sqrt{2}
\end{array}\right]\left[\begin{array}{c}
\mathbf{u}_{5} \\
0
\end{array}\right] \begin{array}{cc}
0 & 1 \\
-1 & 0 \\
-1 & 0 \\
0 & 1 \\
0
\end{array}\right]
\end{aligned}
$$

Edge Detection (VERY IMPORTANT)

- Image areas where:
- Brightness changes suddenly =
- Some derivative has a large magnitude
- Often occur at object boundaries!
- Find by:
- Estimating partial derivatives with kernels
- Calculating magnitude and direction from partials

Edge Detection

Diatom image (left) and its gradient
magnitude (right).
(http://bigwww.epfl.ch/theve naz/differentials/)
$\nabla f=\left[\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}\right]^{\mathrm{T}} \equiv\left[G_{x} G_{y}\right]^{\mathrm{T}}$
$|\nabla f|=\sqrt{G_{x}^{2}+G_{y}^{2}}=$ Edge Strength
$\angle \nabla f=\operatorname{atan}\left(\frac{G_{x}}{G_{y}}\right)$

Detected edges are:

- Too thick in places
- Missing in places
- Extraneous in places

Then threshold the gradient magnitude image

Convolving w/ Fourier

- Sometimes, the fastest way to convolve is to multiply in the frequency domain.
- Multiplication is fast.

Fourier transforms are not.

$\begin{array}{l}\text { For kernels } \leq 7 \times 7, \\ \text { normal (spatial domain) } \\ \text { convolution is fastest }\end{array}$

- The Fast Fourier Transform (FFT) helps
- Pratt (Snyder ref. 5.33) figured out the details
- Complex tradeoff depending on both the size of the kernel and the size of the image
*For almost all image sizes

Image Pyramids

- A series of representations of the same image
- Each is a $2: 1$ subsampling of the image at the next "lower level.
- Subsampling = averaging = down sampling
- The subsampling happens across all dimensions!
- For a 2D image, 4 pixels in one layer correspond to 1 pixel in the next layer.
- To make a Gaussian pyramid:

1. Blur with Gaussian
2. Down sample by $2: 1$ in each dimension
3. Go to step 1

Scale Space

- Multiple levels like a pyramid
- Blur like a pyramid
- But don't subsample
- All layers have the same size
- Instead:
- Convolve each layer with a Gaussian of variance σ.
- σ is the "scale parameter"
- Only large features are visible at high scale (large σ).

Quad/Oc Trees

- Represent an image
- Homogeneous blocks
- Inefficient for storage

- Too much overhead
- Not stable across small changes
- But: Useful for representing scale space.

Gaussian Scale Space

- Large scale = only large objects are visible
- Increasing $\sigma \rightarrow$ coarser representations
- Scale space causality
- Increasing $\sigma \rightarrow$ \# extrema should not increase
- Allows you to find "important" edges first at high scale.
- How features vary with scale tells us something about the image
- Non-integral steps in scale can be used
- Useful for representing:
- Brightness
- Texture
- PDF (scale space implements clustering)

How do People Do It?

- Receptive fields
- Representable by Gabor functions
- 2D Gaussian +
- A plane wave
- The plane wave tends to propagate along the short axis of the Gaussian
- But also representable by Difference of offset Gaussians
- Only 3 extrema

Canny Edge Detector

1. Use kernels to find at every point:

- Gradient magnitude
- Gradient direction

2. Perform Nonmaximum suppression (NMS) on the magnitude image

- This thins edges that are too thick
- Only preserve gradient magnitudes that are maximum compared to their 2 neighbors in the direction of the gradient

Canny Edge Detector, contd.

- Edges are now properly located and 1 pixel wide
- But noise leads to false edges, and noise+blur lead to missing edges.
- Help this with 2 thresholds
- A high threshold does not get many false edges, and a low threshold does not miss many edges.
- Do a "flood fill" on the low threshold result, seeded by the highthreshold result
- Only flood fill along isophotes

