Lecture 8—Image Relaxation: Restoration and Feature Extraction

ch. 6 of Machine Vision by Wesley E. Snyder & Hairong Qi

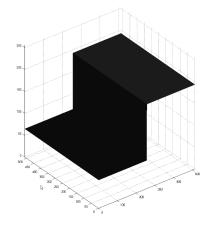
Spring 2024

16-725 (CMU RI): BioE 2630 (Pitt)

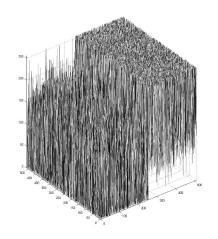
Dr. John Galeotti

All images are degraded

- Remember, all measured images are degraded
 - Noise (always)
 - Distortion = Blur (usually)
- False edges
 - From noise
- Unnoticed/Missed edges
 - From noise + blur



original image plot



noisy image plot

We need an "un-degrader"...

- ■To extract "clean" features for segmentation, registration, etc.
- Restoration
 - *A-posteriori* image restoration
 - Removes degradations from images
- Feature extraction
 - Iterative image feature extraction
 - Extracts features from noisy images

Image relaxation

- The basic operation performed by:
 - Restoration
 - Feature extraction (of the type in ch. 6)
- An image *relaxation* process is a multistep algorithm with the properties that:
 - The output of a step is the same form as the input (e.g., 256² image to 256² image)
 - Allows iteration
 - It converges to a bounded result
 - The operation on any pixel is dependent only on those pixels in some well defined, finite **neighborhood** of that pixel. (optional)

Restoration: An inverse problem

- Assume:
 - ■An ideal image, *f*
 - ■A measured image, g
 - lacktriangle A distortion operation, D
 - ■Random noise, *n*
- Put it all together:

$$g = D(f) + n$$
How do we extract f ?

This is what we want

This is what we get

Restoration is ill-posed

- Even without noise
- Even if the distortion is linear blur
 - •Inverting linear blur = deconvolution
- But we want restoration to be well-posed...

A well-posed problem

- $\bullet g = D(f)$ is well-posed if:
 - For each *f*, a solution exists,
 - The solution is unique, AND
 - The solution g continuously depends on the data f
- Otherwise, it is ill-posed
 - Usually because it has a large condition number:

Condition number, K

- $\bullet K \approx \Delta$ output / Δ input
- For the linear system b = Ax
 - $-K = ||A|| ||A^{-1}||$
 - **■***K* ∈ [1,∞)

K for convolved blur

- Why is restoration ill-posed for simple blur?
- Why not just linearize a blur kernel, and then take the inverse of that matrix?
 - $\blacksquare F = H^{-1}G$
- Because H is probably singular
- ■If not, H almost certainly has a large K
 - lacksquare So small amounts of noise in G will make the computed F almost meaningless
- See the book for great examples

Regularization theory to the rescue!

- How to handle an ill-posed problem?
- Find a related well-posed problem!
 - One whose solution approximates that of our ill-posed problem
- E.g., try minimizing:

$$E = \sum_{i} (g_i - (f_i \otimes h))^2$$

■ But unless we know something about the noise, this is the exact same problem!

Digression: Statistics

Remember Bayes' rule?

This is the a posteriori conditional pdf

This is the conditional pdf

This is the a priori pdf

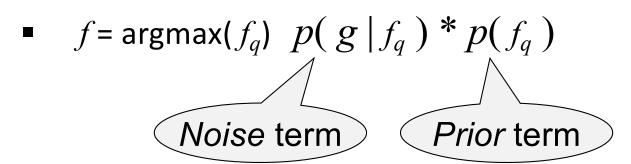
Just a normalization constant

$$p(f|g) = p(g|f) * p(f) / p(g)$$

This is what we want!
It is our *discrimination*function.

Maximum a posteriori (MAP) image processing algorithms

- To find the f underlying a given g:
 - 1. Use Bayes' rule to "compute all" $p(f_q \mid g)$
 - $f_q \in (\text{the set of all possible } f)$
 - 2. Pick the f_q with the maximum $p(f_q \mid g)$
 - p(g) is "useless" here (it's constant across all f_q)
- This is equivalent to:



Probabilities of images

- Based on probabilities of pixels
- For each pixel *i*:
 - $\bullet p(f_i | g_i) \propto p(g_i | f_i) * p(f_i)$
- Let's simplify:
 - Assume no blur (just noise)
 - At this point, some people would say we are *denoising* the image.

$$p(g|f) = \prod p(g_i|f_i)$$

$$\bullet p(f) = \prod p(f_i)$$

Probabilities of pixel values

- $\mathbf{p}(g_i|f_i)$
 - This could be the density of the noise...
 - Such as a Gaussian noise model
 - \blacksquare = constant * $e^{\text{something}}$
- $\mathbf{p}(f_i)$
 - This could be a Gibbs distribution...
 - If you model your image as an ND Markov field
 - $\blacksquare = e^{\text{something}}$
- See the book for more details

Put the math together

- Remember, we want:
 - • $f = \operatorname{argmax}(f_q) \ p(g|f_q) * p(f_q)$
 - where $f_q \in \text{(the set of all possible } f)$
- And remember:

 - where $i \in \text{(the set of all image pixels)}$
- ■But we like \sum something better than $\prod e^{\text{something}}$, so take the log and solve for:
 - $f = \operatorname{argmin}(f_q) \left(\sum p'(g_i | f_i) + \sum p'(f_i) \right)$

Objective functions

• We can re-write the previous slide's final equation to use objective functions for our noise and prior terms:

■
$$f = \operatorname{argmin}(f_q)$$
 ($\sum p'(g_i | f_i) + \sum p'(f_i)$)

↓

 $f = \operatorname{argmin}(f_q)$ ($H_n(f,g) + H_p(f)$)

•We can also combine these objective functions:

$$\blacksquare H(f,g) = H_n(f,g) + H_p(f)$$

Purpose of the objective functions

- Noise term $H_n(f,g)$:
 - If we assume independent, Gaussian noise for each pixel,
 - We tell the minimization that f should resemble g.
- Prior term (a.k.a. regularization term) $H_p(f)$:
 - Tells the minimization what properties the image should have
 - Often, this means brightness that is:
 - Constant in local areas
 - Discontinuous at boundaries

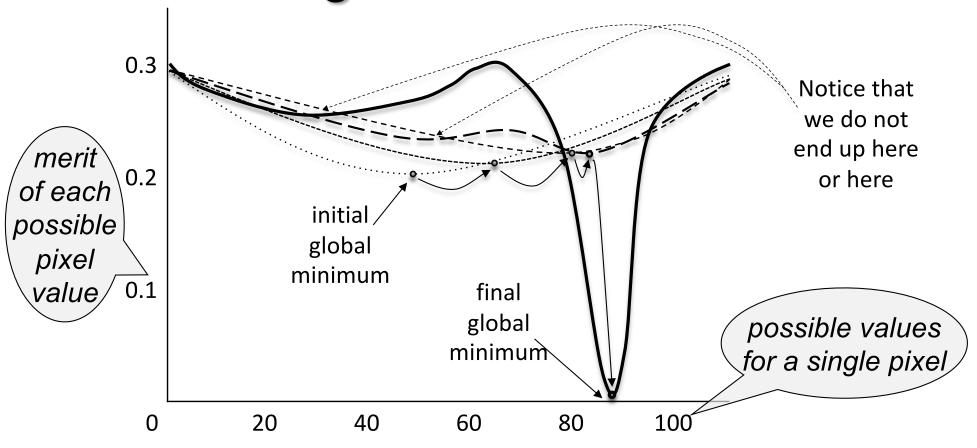
Minimization is a beast!

- Our objective function is not "nice"
 - It has many local minima
 - So gradient descent will not do well
- We need a more powerful optimizer:
- Mean field annealing (MFA)
 - Approximates simulated annealing
 - But it's faster!
 - It's also based on the mean field approximation of statistical mechanics

MFA

- MFA is a continuation method
- So it implements a homotopy
 - A homotopy is a continuous deformation of one hyper-surface into another
- MFA procedure:
 - 1. Distort our complex objective function into a convex hyper-surface (N-surface)
 - The only minima is now the global minimum
 - Gradually distort the convex N-surface back into our objective function

MFA: Single-Pixel Visualization



Continuous deformation of a function which is initially convex to find the (near-) global minimum of a non-convex function.

Generalized objective functions for MFA

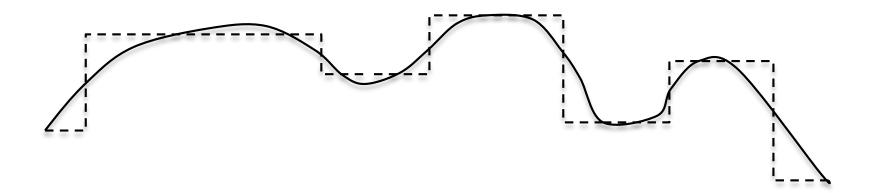
- Noise term: $\sum_{i} ((D(f))_{i} g_{i})^{2}$
 - $(D(f))_i$ denotes some distortion (e.g., blur) of image f in the vicinity of pixel I
- Prior term: $-\frac{1}{\tau} \sum_{i} e^{-\frac{(R(f))_{i}^{2}}{\tau^{2}}}$
 - lacktriangle au represents a priori knowledge about the roughness of the image, which is altered in the course of MFA
 - $(R(f))_i$ denotes some function of image f at pixel i
 - The prior will seek the f which causes R(f) to be zero (or as close to zero as possible)

R(f): choices, choices

Piecewise-constant images

$$R^{2}(f) = \left(\frac{\partial f}{\partial x}\right)^{2} + \left(\frac{\partial f}{\partial y}\right)^{2}$$

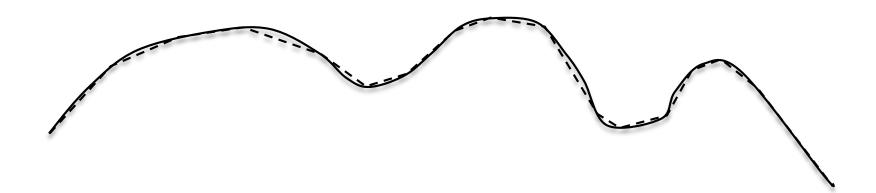
- =0 if the image is constant
- \approx 0 if the image is piecewise-constant (why?)
 - The noise term will force a piecewise-constant image



R(f): Piecewise-planer images

$$R^{2}(f) = \left(\frac{\partial^{2} f}{\partial x^{2}}\right)^{2} + \left(\frac{\partial^{2} f}{\partial y^{2}}\right)^{2} + \left(\frac{\partial^{2} f}{\partial x \partial y}\right)^{2}$$

- =0 if the image is a plane
- \approx 0 if the image is piecewise-planar
 - The noise term will force a piecewise-planar image



Graduated nonconvexity (GNC)

Similar to MFA

- Uses a descent method
- Reduces a control parameter
- Can be derived using MFA as its basis
- "Weak membrane" GNC is analogous to piecewiseconstant MFA

But different:

- Its objective function treats the presence of edges explicitly
 - Pixels labeled as edges don't count in our noise term
 - So we must explicitly minimize the # of edge pixels

Variable conductance diffusion (VCD)

- ■Idea:
 - Blur an image everywhere,
 - except at features of interest
 - such as edges

VCD simulates the diffusion eq.

$$\frac{\partial f_i}{\partial t} = \nabla \cdot (c_i \cdot \nabla_i f)$$
temporal spatial derivative derivative

Where:

- t = time
- $\nabla_i f$ = spatial gradient of f at pixel i
- c_i = conductivity (to blurring)

Isotropic diffusion

- •If c_i is constant across all pixels:
 - Isotropic diffusion
 - Not really VCD
 - Isotropic diffusion is equivalent to convolution with a Gaussian
 - The Gaussian's variance is defined in terms of t and c_i

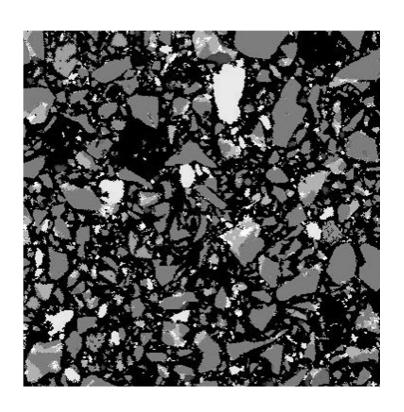
VCD

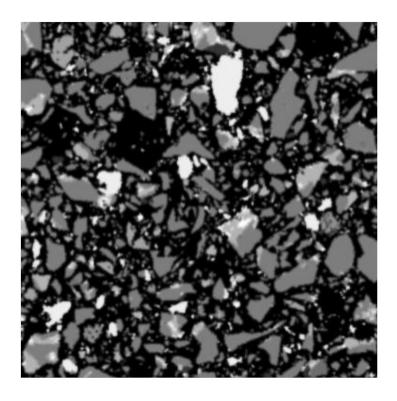
- $ullet c_i$ is a function of spatial coordinates, parameterized by i
 - Typically a property of the local image intensities
 - Can be thought of as a factor by which space is locally compressed
- ■To smooth except at edges:
 - Let c_i be small if i is an edge pixel
 - Little smoothing occurs because "space is stretched" or "little heat flows"
 - Let c_i be large at all other pixels
 - More smoothing occurs in the vicinity of pixel *i* because "space is compressed" or "heat flows easily"

VCD

- A.K.A. Anisotropic diffusion
- With repetition, produces a nearly piecewise uniform result
 - Like MFA and GNC formulations
 - Equivalent to MFA w/o a noise term
- Edge-oriented VCD:
 - VCD + diffuse tangential to edges when near edges
- Biased Anisotropic diffusion (BAD)
 - Equivalent to MAP image restoration

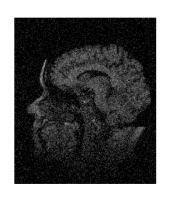
VCD Sample Images

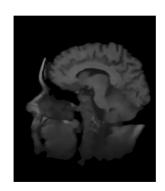




- From the Scientific Applications and Visualization Group at NIST
- http://math.nist.gov/mcsd/savg/software/filters/

Various VCD Approaches: Tradeoffs and example images





- Mirebeau J., Fehrenbach J., Risser L., Tobji S., "Anisotropic Diffusion in ITK", the *Insight Journal*
- Images copied per Creative Commons license
- http://www.insight-journal.org/browse/publication/953
 - Then click on the "Download Paper" link in the top-right

Edge Preserving Smoothing

- Other techniques constantly being developed (but none is perfect)
- •E.g., "A Brief Survey of Recent Edge-Preserving Smoothing Algorithms on Digital Images"
 - https://arxiv.org/abs/1503.07297
- SimpleITK filters:
 - BilateralImageFilter
 - Various types of AnisotropicDiffusionImageFilter
 - Various types of CurvatureFlowImageFilter

Congratulations!

- You have made it through most of the "introductory" material.
- Now we're ready for the "fun stuff."
- "Fun stuff" (why we do image analysis):
 - Segmentation
 - Registration
 - Shape Analysis
 - Etc.