
This work by John Galeotti and Damion Shelton, © 2004-2024, was made possible in part by NIH NLM contract#
HHSN276201000580P, and is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons, 171 2nd Street, Suite 300, San
Francisco, California, 94105, USA. Permissions beyond the scope of this license may be available by emailing itk@galeotti.net.
The most recent version of these slides may be accessed online via http://itk.galeotti.net/

Methods in Medical Image Analysis - Spring 2024
16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

Based in part on Damion Shelton’s slides from 2006

Lecture 4
Getting Started with ITK!

1

http://creativecommons.org/licenses/by/3.0/

Goals for this lecture

§Compile, compile, compile
§ Learn how to use SVN & CMake
§Build ITK
§Compile several programs that use ITK

§Find documentation online
§Learn the quirks (if any) of the system you

choose to use

2

Getting help

§Email your instructor
§Join the insight-users mailing list; instructions

are at http://www.itk.org

3

Assignments

§Collaboration is encouraged; unless told
otherwise, feel free to discuss assignments with
other students

§But… please submit your own code - don’t copy
and paste stuff from friends; see syllabus for
details

§More so than other classes, you will be learning
techniques that translate directly to the real world
- don’t cheat yourself

4

Grading of assignments

§Grading criteria:
§Does it accomplish the specified task?
§ Is it well commented? Follow the “6 month rule” - if

you leave for 6 months, you should be able to pick up
where you left off.

§Many/most assignments will be divided into sections,
with each section pass-fail.
§ We may give opportunities to fix “stupid” problems before

final judgment is passed

5

Assignments, cont.

§Please interpret due dates as absolute, unless
told otherwise

§Really
§We’re happy to spend time helping you debug

code, but not at 11 pm the day before the
assignment is due

6

Computer requirements:
recommended

§ Your own computer is preferable
§ Remote-login to university computers should also work
§ Please be aware that ITK can consume a lot of disk space during the

build process (feel free to use BOXDrive or Gdrive)
§ Windows 10 or 11 with Visual Studio 2019; Python 3.9-

3.11(x64)
§ Suggest Win11
§ Suggest Visual Studio (Code or Enterprise) 2019 and Anaconda 3.11
§ Get “Microsoft Azure Dev Tools for Teaching” from CMU
§ Newer versions should work, but we haven’t verified

§ Mac OS X, X-Code, user-installed Anaconda Python 3.9-3.11,
either x64 or M1 (M1 = amd64, includes M2, M3, etc.)

§ Recent x64 Linux (e.g. Ubuntu, RHEL, or CentOS), system gcc;
user-installed Anaconda Python 3.9-3.11

7

https://cmu.onthehub.com/p/azure

What am I using?

§Mac OS X Sonoma:
§Anaconda Python 3.11 for M1 (M1 is the same as

arm64)
§ Latest Xcode

8

Alternative usable computer
configurations

§Any platform supported by ITK (Mac, Linux, etc.)
§ If there are problems, you will have to work with us to

get your code working on one of our machines.
§ Try having us check your code before it is due.

§ If the grader’s computer can’t run your code, you will have
a short (but reasonable) period of time to fix it after he
emails you that your code appears broken (along with
what errors he got).
§ If you are trying to make things work, but have many things to

“fix,” then more time may be granted.
§ For final projects, we may decide to let you show us your code

running on your own machine, on a case-by-case basis.

9

What is ITK?

§To clarify, ITK is a source-code/library toolkit
§ It doesn’t “do” anything
§ You can’t “run” it
§ There isn’t an itk.exe file

§Typically, you use ITK in conjunction with other
toolkits to handle visualization and GUI
interaction

10

So, what’s it good for?

§ITK code is easy to add to existing C++ code
§Also Python, C#, Java, …

§It provides a variety of flexible data containers,
and ways of processing / analyzing them

§You can do a lot in only a few lines of code
§Once you get used to it, it’s easy to use (gasp!)

11

What we assume you can do

§Understand C++ and/or Python syntax
§ Standard flow control such as for, do, calling

functions, etc.
§Classes
§ Inheritance
§ For C++: Pointers, dereferencing, passing by

reference
§Work comfortably in the operating system of

your choice, using the compiler or Python
environment of your choice, running programs
from the command line (i.e. terminal)

12

You may have not…

§Written C++ code that builds on multiple
platforms

§Used cross-platform make software
§ (CMake or Jam, for example)

§Designed software using a data-flow
architecture, worried about smart pointers, etc.

13

Cross platform (C++) development

§ITK builds on a large combination of operating
systems and platforms

§For C++, each compiler has it’s own input
format: Makefiles, workspaces, etc.

§Q: How can you possibly coordinate builds on
different platforms?

14

The answer: CMake

§Cross platform tool to manage
the build process

§Simplifies the build process
§Auto-configuration
§Easy access to external libraries
§Used by several other open

source projects

15

www.cmake.org

CMake is:

§Required to build native (C++) ITK
§Cross-platform project generator
§Often simpler than particular environments
§Text as input
§Project file as output:

16

Windows Visual Studio Solution

UNIX Makefile or Ninja

Mac OS X Xcode project or Ninja or Makefile

How CMake runs

§Write a file describing your
project in CMake’s language

§Run CMake to generate an appropriate
makefile/project/workspace for your compiler

§Compile as you normally would

17

How CMake runs, cont.

§This is not unlike the configure-make process
you may be familiar with from various Unix
systems

§But… it works with many compilers
§CMakeLists.txt files are easy to perform revision

control on

18

CMakeLists.txt syntax

§ Comment lines indicated with #
§ Look at examples in ITK
§ Simple example:

19

Full Example of CMakeLists.txt

20

Steps to get started with C++ ITK &
SimpleITK

§Pay Attention
§ This is important for everyone for HW2
§ If you are compiling C++ SimpleITK, you do not need to

compile ITK separately
§ Compiling C++ SimpleITK using the “SuperBuild” approach

automatically downloads and compiles ITK for us—we’ll explain
more shortly

§ I suggest you make a directory to hold all your source
code and build trees for this class, e.g. c:\bmia
§ Windows WARNING: Do not use long directory names on

Windows, or place the directory in your Documents folder, or
else the total path names will become too long for Windows
and building (Simple)ITK will fail.

21

Step 0 – Don’t panic!

§There is substantial documentation on
everything I’m going to present here, and vastly
more about things that we will never cover in
this course

§https://simpleitk.readthedocs.io/
§https://simpleitk.readthedocs.io/en/master/faq.html
§ ITK C++ API: https://itk.org/Doxygen/html/index.html
§Download a copy of the ITK Software Guide
§https://itk.org/ItkSoftwareGuide.pdf

22

Step 1 - Install CMake

§Check if CMake ≥ 3.18 is already installed on your
computer.

§If not, …
§Download and install the latest stable binary

distribution of CMake from:
§http://www.cmake.org/

23

Step 2 - Install (Simple)ITK

§Note: If you are going to compile SimpleITK (we are), then
do not install ITK directly
§ SimpleITK’s “SuperBuild” will compile & install ITK for you
§ …Following a procedure similar to that for ITK
§ https://simpleitk.readthedocs.io/en/master/building.html

§Create a directory to hold the source and build for both
SimpleITK and ITK

§Open a command prompt and go to the new directory
§Download the latest version of SimpleITK using git:

24

https://github.com/SimpleITK/SimpleITK.git

In source vs. out source builds

25

Source Tree

ITK

Common

Algorithms

BasicFilter

Numerics

IO

ITKb

Common

Algorithms

BasicFilter

Numerics

IO

Binary Tree

Recommended !
Out

Source Build

In
Source
Build

Why use two trees?

§Keeps your C++ source and binary code
separate

§Minimizes the amount of damage you can do to
your SVN tree

§We suggest that you build SimpleITK in a new
folder you create named SITKBin

§WARNING: Because ITK is downloaded
automatically by building SimpleITK, both the
source and the build directories for ITK will be
found inside the SITKBin directory

26

Where Will Everything Be?

§ After building the SimpleITK SuperBuild as instructed, your
important stuff will be here:

§ SimpleITK Source:

§ SimpleITK Build:

§ SimpleITK C++ Libraries (one or both of these two):

§ ITK Source:

§ ITK C++ Build:

§ ITK C++ Libraries:

27

Configuring a SimpleITK Build:
Easy Start

§ Run CMake

§ Select the SOURCE directory:
§ .\SimpleITK\SuperBuild

§ Select the BINARY directory:
§ .\SITKBin

§ Press the “Configure” button

28

CMake may ask to choose
which compiler (“generator”)
you want to use for compiling:

On my OS X system, here are
the choices:

29

CMake: Choosing a Compiler

• On Windows, choose your version of Visual Studio
• On OS X, choose Xcode (recommended) or ”Unix Makefiles”
• On Linux, choose an appropriate Makefiles or Ninja option

Configure - Easy Start, cont.

30If you get a message about needing Java, just click ok.

Configure - Easy Start, cont.

§ Disable each of these:
§ BUILD_EXAMPLES

§ BUILD_TESTING

§ WRAP_*, e.g. WRAP_JAVA, WRAP_LUA, etc.

31

§ To read special
microscopy-
format images
§ Click the “Add

Entry” button

§ Fill in the dialog
as shown

Configuring and Generating

§After you change an option or options you will
need to “configure” CMake again

§If the generate button (“OK” under Windows) is
not presented, you definitely need to click the
“configure” button again

§If any of the options are highlighted in red, you
need to click the “configure” button again

§When done, click either “Generate” or “OK
§Generating is usually very fast

32

§ You are now ready to
actually compile C++
SimpleITK and ITK

§ In Cmake, click “Open
Project”
§ This will open up Visual Studio

or Xcode, etc. for your
SimpleITK project

§ Visual Studio:
§ Build®Build Solution

§ Xcode:
§ Product®Build

§ It will probably take
somewhere between 30-
300 minutes, but your time
may vary a lot

33

Build ITK

Verify the Build

SimpleITK Libraries will be found in:

SITK_BINARY / { SimpleITK-Build / } lib / { Debug, Release}

ITK Libraries will be found in:

SITK_BINARY / ITK-build / bin / { Debug, Release}

34

Alternative Approach:
Building with Makefiles and gcc

§WARNING: Do not follow this alternative approach if
you already followed the previous CMake instructions.

§Order of operations is the same
§Differences

§ Can only configure for a debug OR a release build
§ Run the ccmake executable, with one of these:
§ -DCMAKE_BUILD_TYPE=DEBUG
§ -DCMAKE_BUILD_TYPE=RELEASE

§ ccmake uses a curses TUI, “identical” to the GUI
§ Run make instead of Visual Studio
§ Think of CMake as replacing the “./configure” step you may be

used to

35

Alternative Approach:
Building with Makefiles and gcc

Start in the directory containing SimpleITK

Edit CMake options
Reconfigure if needed

36

Now what?

§At this point, you have a bunch of source code
and a bunch of compiled libraries

§As mentioned earlier, you don’t yet have
anything executable

37

Reminder: What Will Be Where

§ SimpleITK Source:

§ SimpleITK Build:

§ SimpleITK C++ Libraries (one or both of these two):

§ ITK Source:

§ ITK C++ Build:

§ ITK C++ Libraries:

38

Building an application

§ITK comes with a simple application you can
build in order to test the ITK libraries “out of
source” (i.e. not built inside ITK)

§It can be found in:

39

How to build HelloWorld

§Copy & rename the Installation directory
somewhere outside of the Insight directory

§Run CMake on
§Remember the source/binary distinction and use

as your build location

§CMake should automatically find ITK
§ if not, edit the option

40

How to build HelloWorld, cont.

§Once CMake is happy, generate the
Makefile/project for your compiler

§Build HelloWorld
§Give it a try

41

More examples

§You can turn on ITK’s Examples option in CMake,
which will build all of the examples for you

§Or… you can copy the examples out-of-source and
build them like you did HelloWorld

§These examples link into ITK Software Guide; read
the chapter, poke the code and see what
happens…

42

C++ Workflow thoughts

You should get used to the idea of:
1. Writing some code
2. Writing a CMakeLists.txt file
3. Running CMake
4. Building your code
5. Rinse, repeat

43

An aside: how to use ITK with
existing C/C++ applications

§Your existing app may not use CMake
§In this case, you need to link to the ITK libraries

explicitly and include the appropriate source
directories

§This isn’t hard, but it may take some trial and error
to discover everything you need

§You don’t need to worry about this in the context
of this class

44

ITK Documentation

§Most of the ITK documentation is generated
automatically from source comments using
Doxygen

§Please familiarize yourself with the various means
of navigating the Doxygen documentation online,
e.g. selecting a Module and then selecting a Class

§Don’t forget the URLs on slide 22 (“Step 0”).

45

More Great News! ITK in Python

§You can now install a (slightly) simplified
version of full ITK in Python:

§Great news if you need some of ITK’s more
advanced functionality, but only use Python

§Examples: https://discourse.itk.org/t/itk-5-0-
beta-1-pythonic-interface/1271

46

