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Registration:
“Rigid” vs. Deformable
§Rigid Registration:
§Uses a simple transform, uniformly applied
§Rotations, translations, etc.

§Deformable Registration:
§Allows a non-uniform mapping between images
§Measure and/or correct small, varying 

discrepancies  by deforming one image to match 
the other

§Usually only tractable for deformations of small 
spatial extent!
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§Vector field (aka deformation field) T is computed 
from A to B

§ Inverse warp transforms B into A’s coordinate system
§Not only do we get correspondences, but…
§We also get shape differences (from T)
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Deformable, i.e. Non-Rigid, 
Registration (NRR)

A B B(T)



NRR Clinical Background

§Internal organs are non-rigid
§The body can change posture
§Even skeletal arrangement can change

§Single-patient variations:
§Normal
§Pathological
§Treatment-related

§Inter-subject mapping:  People are different!
§Atlas-based segmentation typically requires NRR
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More Clinical Examples

§Physical brain deformation during 
neurosurgery
§Normal squishing, shifting and emptying of 

abdominal/pelvic organs and soft tissues
§Digestion, excretion, heart-beat, breathing, etc.

§Lung motion during respiration can be huge!
§Patient motion during image scanning
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Optical Flow

§Traditionally for determining motion in 
video—assumes 2 sequential images
§Detects small shifts of small intensity 

patterns from one image to the next
§Output is a vector field, one vector for each 

small image patch/intensity pattern
§Basic gradient-based formulation assumes 

intensity values are conserved over time
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Optical Flow Assumptions

§Images are a function of space and time
§After short time dt, the image has moved dx
§Velocity vector v = dx/dt is the optical flow

 I(x, t) = I(x+dx, t+dt) = I(x+v�dt, t+dt)

§Resulting optical flow constraint:

Cof   =  Ix�v + It = 0
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Optical Flow Constraint

§Optical flow constraint dictates that when 
an image patch is spatially shifted over time, 
that it will retain its intensity values
§Let image A = I(x, t =0) and let B = I(x, t =1)
§Then It = A(T) – B

§This alone is not a sufficient constraint!
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NRR Is Ill-Posed

§Review of well-posed problems:
§A solution exists, is unique, and depends 

continuously on the data
§Otherwise, a problem is ill-posed

§Ambiguity within homogenous regions:
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Very Ill-Posed Problem

§NRR answer is not unique, and…
§NRR Search-space is often ∞-dimensional!

§Solution:  Regularization
§Adding a regularization term can provide provable 

uniqueness and a computable subspace
§Regularization usually based on continuum mechanics
§T is restricted to be physically admissible
§We’re typically deforming physical anatomy, after all
§Optimum T should deform “just enough” for alignment
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NRR Regularization Methods

§ Numerous continuum mechanical models available for 
regularization priors
§ Elastic
§ Diffusion
§ Viscous
§ Flow
§ Curvature

§ Optimization is then physical simulation over time, t, of trying to 
deform one image shape to match another

§ This optimization has 3 equivalent formulations:
§ Global potential energy minimization
§ Variational or weak form, as used in finite-element methods
§ Euler-Lagrangian (E-L) equations, as used in finite-difference 

techniques
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§Elastic physical model:
§ How much have we 

stretched, etc., from our 
original image coordinates?

§ Simulation calculates the 
physical model’s resistance to 
deformation based on the 
total deformation from time 
t=0 to t=now.

§T is the final vector field ūf :
ūf = ū( t=tfinal )
A(X + ūf) ~ B(x)
X = x - ūf

§Deformation at time t:

§Deformation at time t + dt:
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Langrangian View

A( X ) A( X+ū(t) ) 

A( X ) A( X+ū(t+dt) )



A( x+v(t) ) 

§ Viscous-flow physical model:
§ How much have we flowed from 

our immediately previous 
simulation state?

§ Simulation calculates the physical 
model’s resistance to 
deformation based on the 
incremental deformation from 
time t=(now-1) to t=now.

§ T is the aggregate flow of x(t), 
based on accumulated optical 
flow (i.e. velocity) v(t):
x(t) = x + v(t)
A( x(t=tfinal) ) ~ B(x)

§Deformation at time t:

§Deformation at time t + dt:
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Eulerian View
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Comparison of Regularization 
Reference Frames
§Langrangian
§The entire deformation is regularized
§Well constrained for “normal” physical deformation
§Too constrained to achieve “large” deformations

§Not ideal for many inter-subject mapping tasks
§Eulerian
§Only the incremental updates are regularized
§Underconstrained for “normal” physical deformation
§Readily achieves large, inter-subject deformations

§Unrealistic transformations can result
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Transient Quadratic (TQ) 
Approach
§ Enables better-constrained large deformations

§ Uses Lagrangian regularization for specified time 
interval, followed by a re-gridding strategy
§ After an interval’s deformation reaches a threshold, we begin 

a new interval for which the last deformation becomes the 
new starting point

§ TQ thus resets the coordinate system while permanently 
storing the past state of the algorithm

§ Results in a hybrid E+L physical model, resembling soft, 
stretchable plastic
§ Maintains the elastic regularization for a given time then 

takes on a new shape until new stresses are applied
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§Goal:  Minimize global potential energy, ED 
§First term adjusts v to make the images match 

(wants Cof = 0 within the bounded domain Ω)
§Second term adds a stabilizing function Ψ, 

typically a regulator operator L applied to v
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Optical Flow E-L Regularized

§After deriving the E-L equations & setting their 
derivative = 0, we find that the…
§Potential energy minimum will occur when:

§First term minimizes optical flow constraint
§Second term minimizes Laplacian (i.e. 

roughness) of velocity field v
§Note that this equation is evaluated locally
§Allows for efficient implementation
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Demons Algorithm:  Math

§Very efficient gradient-descent NRR algorithm
§Originally conceived as having “demons” push 

image level sets around, but is also…
§Based on E-L regularized optical flow
§Alternates between minimizing each half of the 

previous equation:
§Descent in optical flow direction, based on:

§Smoothing, which estimates vxx=0 with a difference-
of-Gaussian filter, by applying a Gaussian on each 
iteration
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Demons Algorithm:  Code

§ Initialize solution (i.e. total vector field) = Identity
§ Loop:

§ Estimate vector field update
§ Use (stabilized) optical flow

§ Add update to total vector field
§ Blur total vector field (for regularization)

§ Allows much larger deformation fields than optical flow alone.
§ Langrangian registration:  blur the total vector field (as above)
§ Eulerian registration:  blur the individual vector-field updates



Choices & Details

§There are many more NRR algorithms 
available
§Almost all of them are slower than demons, 

but they may give you better results
§See the text for details, and lots of helpful 

pictures
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